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ABSTRACT

- Experimerntal results are presented ‘to show the effect of° ‘.
pitch-diameter ratio on propeller~produced unsteady loads. .
Eight three-bladed propellers with changes of equal increments

- of pitch resulting in pitch~diameter ratios from 0.58 to 1.75 L
were tested in three-cycle and four-cycle wake screens. Thg .
data indicated that, in general, for the same thrust loading
coefficient cTh' the unsteady thrust and bending .moments tend

to decrease with increasing pitch whereas the torque increases ‘-
and the side forces change negligibly. However, it is imprac-
ticable to reduce unsteady thrust by altering pitch. For low
thrust loading coefficients, e.g., C h ™ 0.51, optimum pro-

peller efficiencies were obtained with the higher pitch-diameter

ratios. For high thrust loading coefficients, e.g., CTh = 1.53,

the optimum propeller efficiencies were obtained at the lower
pitch ratios, However, the alternating forces did not vary much
for the high as for the low CTh designs and the optimum effi-

ciency pitch ratio was near the optimum unsteady loading pitch
ratio, Consequently, propeller designs for optimum efficiencies
are the most appropriate selections with regards to pitch-
diameter ratio.

Results are presented for the six components of unsteady
loading divided by the appropriate steady loading. As an
example, the thrust and torque variations were as follows. For
a thrust loading coefficient of 0.51 and a change in pitch-

diameter ratio (.58 to 1.75, the alternating thrust ratio T/ D
changed from 0.74 to 0.40, and the alternating torque ratio

(Q / Q) changed from 0.40 to 0.31, For a thrust loading co-
efficient of 1.53 and the same change in pitch-diameter ratio,

(T / T) changed from 0.26 to 0.2 and there was only a negligible
change in (Q / Q).

ADMINISTRATIVE INFORMATION
This project was sponsored by the Ship Silencing Division (037) of the
Naval Sea Systems Commund under Program Element 62754N, and Task SF 43 452

ma————-
702. The work was performed at the David W. Taylor Naval Ship Research and
Development Center (DTNSRDC) under Task 16079, Work Unit 1-1544-259,




INTRODUCTION

The unsteady forces and moments produced by speration of a propeller

in the wake of a ship are of fundamental importance in the analysis of
machinery and hull vibration. The circumi-ventially nonuniform inflow into
the propeller subjects e:ch blade section to periodic variations in its
infiow velocity and angle of attack, resulting in undesirable fluciuations
in the propeller loading. These propeller-produced fluctuating forces and
moments (unsteady bearing forces and moments) are transmitted from the pro-
peller through its shaft and bearings to the machinery and other parts of
the hull structure. (Propeller-generated pressure fluctuations are also
transmitted through the water tc the ship hull and can cause the hull to
vibrate; however, that type of -ibration is not considered in this report,)
Severe vibration problems can result if the alternating forces are large.
In addition, since vibration problems increase with increasing speed and
power and since the trend of advancing ship technology is toward increased
speed and power, the unsteady forces produced by the propeller are of con-
siderable interest to the designers of ships and propellers. Therefore,
it has become increasingly important to design propelléfs with blade
shapes selected to reduce the alternating forces. This requires information
on how the various geometric parameters of a propeller influence the magni-
tude of the alternating forces and moments,
The present investigation was conducted as part of a continuing effort
; at the Navid W, Taylor Naval Ship Research and Nevelopment Center (DTNSRDC)
to evaluate the effects of various parameters, e.g., wake velocity dis-
tribution, propeller blade skew, blade warp, blade width, pitch-ratio, etc.,
on the propeller-generated unsteady bearing forces and moments. The ob-
jective of this investigation was to determine experimentally the effect of
pitch~diameter ratio on the alternating forces produced by a propeller

operating in a wake. The results indicate that, in general, the higher the

pitch in a given desiga problem, the lower the blade frequency thrust and
the higher the blade frequency torque. In addition, the propeller side
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forces tend to increase slightly and the bending moments decreasée with an
incriase in pitch. The blade frequency torque results disagree with
analytical calculations by Boswell and Hilletl of the effect of pitch on
propeller-produced unsteady thrust and torque. In their parametric in-
vestigation of various propeller geometrical parameters, they comsidered the
effect of pitch analytically. Their calculations were made with an

early version of a propeller unsteady forces prediction computer program
developed at the Stevens Institute of Technology (SIT) and reported by
Tsakonas, Breslin, and Hiller.z No ¢omparisons with analytical predictions
based on this program, other than the Boswell and Miller results, are pre-
sented herein. The numerical analysis procedure has been superseded by a
more exact approach, also developed at SIT, as reported by Tsakonas, Jacobs,
and A11.3 The continuing development of the analytical procedures has
created an obvious need for experimental data for comparison purposes. It
is in this spirit that the results of the present investigation are
reported.

Eight 1-ft (0.305-m)-diameter, three-bladed propellers with expanded
area ratios of 0.54 and pitch-diameter (P/D) ratios varying from 0.58 to
1.75 were tested in three-cycle and four-cycle wake screens. The six
components of the alternating propeller forces and moments were measured in
the closed-jet test section of the 24-in, variable-pressure water tunnel at
DINSRDC. The unsteady thrust decreased and the unsteady torque increased
by factors of 1.9 and 1.4, respectively, for a thrust loading coefficient

1Boswell, R.J., and M.L. Miller, "Unsteady Propeller Loading - Measure=-
ment, Correlation with Theory, and Parametric Study," NSRDC Report 2625
(Oct 1968). A complete listing of references is given on page 48.

szakonas, S. et al., "Correlation and Application of an Unsteady Flow
Theory for Propeller Forces," Transactions of the Society of Naval
Architects and Marine Engineers, Vol., 75, pp. 158-193 (1967).

3Tsakonas, S. et al., "An Exact Linear Lifting-Surface Theory for a
Marine Propeller in a Nonuniform Flow Field," Stevens Institute of
Technology DL Report 1509 (Feb 1972).
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cTh = 0,51 and a change in P/D ratio from 0.58 to 1.75. The unsteady thrust
decreased and the unsteady torque increased by factors of 1.8 and 1.9, re-. -
spectively, for a thrust loading coefficient cTh = 1.53 and a change in .. .
P/D ratio from (.58 to 1.75. The optimum P/D ratios for the thrust loading
coefficients cTh = 0,51 and 1.53 were approximately equal to 1.45 and 1.1,
respectively. The observed trends are of interest in the design problem.
For instance, varying the P/D ratio as a means of reducing aiternating
thrust is not practicable because (1) designs selected on the basis of
optimum propeller efficiency are near optimum with regard to the pitch that
affects the alternating forces production; (2) the alternating torque tends
to increase with pitch; and (3) it has been demonstrated that other blade

1,4,5 and warp6 cause greater changes in the

shape changes, e.g., skew
alternating forces produced by the propeller than the changes attributable

to pitch and measured in this experiment,

METHOD AMD PROCEDURE
PROPELLER MODELS
The present investigation required 2 fairly large number of propellers.
Eight commercially available models, designated the M-P design series by
the manufacturer, were purchased from !Michigan Wheel. The only change in
the catalog specifications was an increase in the diameter of the stock hub

as necessary to fit the existing dynamometer mount., The adequacy of

aCumming, R.A., et al,, "Highly Skewed Propellers," Transactions of the
Society of Naval Architects and Marine Fngineers, Vol. 80, pp. 98-135
(1972).

5Valentlne, D,T. and F,J. Dashnaw, "Highly Skewed Propellers for San
Clemente Class Ore/Bulk/0it Carrier Design Considerations, Model and Full-
Scale Evaluation," Proceedings of the First Ship Technology and Research
(STAR) Symposium, Vlashington, D.C. (Aug 1975).
6-‘lelka. J.J., "I[xperimental Evaluation of a Series of Skewed Propellers
with Forward Rake: Open-Water Performance, Cavitation Performance, Field-
Point Pressures, and Unsteady Propeller Loading," DTNSRDC Report 4113
(Jul 1974),
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comsercially available propellers for the present investigation was verified
by comparing the present reésults with those of Boswell-and Hiilét,l as
discussed later,

All eight propellers had a diameter of 1 ft (30.5 cm), a blade area
ratio of 0.54, three blades, and zero skew. Thus the propellers differed
only ir pitch (17.78, 22.86, 27.94, 33.02, 38.1, 43.18, 48.26, and 53.34
cm). This range of P/D ratios (from 0.58 to 1.75) was selected bécause most
practical designs fall within it. Table | summarizes the geometrical
particulars of the propellers, Figure 1 {llustrates the typical shape of

the series, and Figure 2 shows their open-water characteristics.*

TEST FACILITY AND EQUIPMENT

The present experiments were performed in the DTNSRDC 24-in. variable-
pressure water tunnel, a recirculating tunnel with provisions for mounting
wake simulation grids into its 27-in. (68.6-cm)~-diameter closed-jet test
section.** Three-bladed propellers had been selected for the investigation
because of the availability of wake screens for inducing three-cycle and
four-cycle wakes., The wire mesh screens had been consttuctedl by using a
base screen of 0.009-in. (0.023-cm)-diameter wire (16 per inch or 6.3 per
centimeter) and a single overlay screen of 0.015-in. (0.038-cm)~diameter
wire (18 per inch or 7.1 per centimeter) in the high~-wake region. The
overlay screen was oriented so that its wires intersected those of the base

screen at 45 deg (0.785 rad). Since each model was located 2 1/2 propeller

*Code 1524 at DTNSRDC used the deep-water basin and standardized
methods to determine the first-quadrant open-water characteristics of the
eight propellers. A gravity dynamometer installed in the propeller boat
was utilized to measure thrust and torque. The propellers were run at sever-
al shaft speeds and speeds of advance VA which resulted in Reynolds numbers

on the order of 5 x 105 throughout the range of design interest. The shaft
speed and speed of advance were measured to within #0.,01 rps (%0.06

rad/s) and *0.001 fps (+0.003 m/s), respectively., The thrust and torque
for a given advance coefficient were reproducible to better than 2 percent
in repetitive experiments.,

*k
The facility is termed the 24-in, tunnel because of the 24-in, diameter
of the nozzle exit for the open-jet test section.
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dismeters dowmstream, it is believed that its presence did not alter the .
flow over the wires. Moreover, there was only negligible unsteady
interaction hetween the walls of iiir cest section and each propeller,

The three-cycle wake screen produced a non'miform inflow with a
dominant third harmonic and caused the propellers to develop large blade
frequency thrust and torque. The four-cycle wake screen produced a non-
wiiform inflow with a dominant fourth harmonic and caused the propellers
to develop large blade frequency side forces and bending moments. These
wake-producing screens were oriented in the tunnel ahead of the propellers;
see Figures 3 and 4. The velocity field into the propeller plane pro-
duced by the screens had previously been measured with a pitot rake; see
Miller and Boswell.l Their results were as follows. The circumferential

variations in the longitudinal velocity can be expressed as

n, . n
VL(r,°) = VL(t) + :—1 VL (r) sin(n® + ., ) (1)

where

VL(t,G) = local longitudinal inflow velocity to the propeller plane

Fourier coefficient of the nth harmonic of the circum-

VL"(r)
ferential variation in the longitudinal wake velocity

8 = angular coordinate about the shaft axis, positive clockwise
looking upstream (6 = 0 for vertical upward)

¢ = phase angle of the nth harmonic of the wake

o i St Co by« B 2 iy SNt
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The volume mean velocity over the propeller disk is defined as

V,(r,ﬁ) -
v =j‘ 40 I tdr—-—-'-—z-——i— 2)
2% (R -, )
h

where
V&m = volume mean velocity into the propeller disk
R = radius of the propeller

r, = radius of the hub

h

/
The phase angles and nondimensionalized amplitudes of the first 15

harmonics as defined by Equations (1) and (2) are presented in Tables 2 and
3 for the three- and four-cycle screens, respectively. The amplitudes of
the principal harmonics for each screen are presented graphically in
Figures 5 and 6. The phase angles are relative to the radial line directed
vertically upward from the propeller axis. The relation of the zero phase
position in the propeller disk, ramely, the upuvard vertical, corresponds to
8 = 0 in the screen plane, as shown in Figures 3 and 4. Therefore, in the
special case of an almost purely sinusoidal variation in velocity distribu-
tion with negligible differences in phase (radially), the sinusoidal alter-
nating forces and moment, can be interpreted as leading or lagging the
corresponding frequency components of the longitudinal velocity at the
radial line through the midchord of the root section of a propeller blade.
This approach in interpretation was followed by Boswell and Millet1
and explains why ~he phase angles reported herein are referred to as
leading sines; however, this interpretation is not generally applicable

to any wake,
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EXPERIMENTAL RETERMINATION OF UNSTEADY LOADING

The propeller series was run in both the three- and four-cycle wake

patterns. Since.the mean tunnel speed could not be measured directly, a
thrust identity to open-water results was used to determine the advance
coefficients. This assumes that the advance coefficient was the same as that
which would have resulied for the same thrust coefficient in the open-water
experiments. The shaft speed was set to 12 or 15 rev/s (75.4 or 94.2 rad/s,
respectively), depcnding on the pitch of the propeller and the desired test
condition. This provided Reynolds numbers varying from 1.332 to 1.426 x 106
for Propellers 4588 to 4591 (0.58 < P/D < 1.08) and from 1.10 to

1.221 x lo6 for Propellers 4592 to 4595 (1.25 < P/ < 61.75).

Figure 7 presents typical signals from the six-component balance in
the three-cycle wake and Figure 8 typical signals in the four-cycle wake.
One propeller revolution constituted the distance between the pulses in the
upper trace as generated by the single-tooth gear. These signals were
recorded on magnetic tape for subsequdnt computer analysis, and the major
harmonic components of each signal were read from the on-the-spot analysis
system. All six components of force presented in this report were ob-
tained from computer analysis., The experimentally determined amplitudes
of the blade frequency harmonic of all six loading components were

accurate within #5 percent.7

INSTRUMENTATION AND DATA ANALYSIS

The six components of unsteady loading were measured by a six-component
dynamonmeter, and a sting-mounted balance with semiconductor strain gages
was utilized for the sensing elements., The dynamometer assembly electrical
arrangenment and the experimental procedure are described in Millet.7
The strain gage balance was mounted on a stiff sting attached to a flywheel

and the whole assembly ran on soft-mounted hearings and was driven through

7Miller, M.L., "Experimental Determination of Unsteady Propeller
Forces," Seventh ONR Symposium on Naval Hydrodynamics, DR-148, pp.
255-289 (Aug 1968).



a soft coupling. This type of mounting was selected to isolate the system

from the vibrations of the tunnel; it was sarll enough to cause litile
disturbance of the tunnel flow. The totally submerged Advnamometer was

driven by a 10-hp, d-c motor through an external sliprii:z, shaft, and

amplifier housing. The hollow connecting shaft carried the signal cables

and passed through a stuffing tube as it entered the tunnel. Before being :
taken from the shafting, the a-c signals were anplified with solid-state A
preamplifiers to improve the signal-to-noise ratio.

In order to be useful over the range of test conditions, the dyna~
mometer should have a flat frequency response extending from the lowest
shaft frequency of around 10 Hz to several times the highest propeller
blade frequency of 400 Hz. The system was represented by lumped para-
meters, and two principal resonarces were determined for each componant by
means of a vibration analysis. The lower resonance appeared at around 6 Hz
and was caused by vibration of sting and balance assembly as a rigid mass
on the soft bearing supports. The second resonance at about 450 Hz was the
first bending mode due to the mass of the propeller and the spring of the
measuring elements.

The balance was calibrated both statically and dynamically. The static
calibrations were performed for the balance alone outside the tunnel; the
sengitivity of each transducer to the forces applied in axial, torsional,
transverse, and bending modes war determined ia increments over the lnput
force range. The results indicated only two significant interactions:

(1) a small eifect of torque on the thrust readings and (2) some effect

of bending moment on the output o’ che side-force gages in the same plane.
The dynamic calibration was perfurmed after assembly in the tunnel and con-
sisted of exciting the measuring system with a known force in increments of
driving frequency over a broad frequency range. This procedure was carried
out to establish the sensitivity in the dynamic response of each transducer
over the desired range of measuring frequency.

The sign convention in this report was the same as used by Hiller7 and

i{s presented in Figure 9. The balance was designed to measure force and




noment along a pair of orthogonal axes by means of sensors which rotated

with the propeller and allowed the related transverse force and bending-

moment vectors to be measured. At any propeller angle 'b' the forces and
moments with respect to the fixed axes are:

"y g W“WWW ..

= &l cos Bb + Hz sin .b

{'!3

~ ~

b 3
"H -Nl sin 'b + "2 cos 'b

F“ = Fl sin ’b + F2 cos ob

vhere ﬂl' ﬁz. il
rotating coordinate system.

Figure 10 is a block diagram of the instrumentation used with the dyna-

v and ?z are the moments and forces with respect to the

mometer. Power was supplied to the strain-gage bridges for thrust, torque, %
side force, and bending moment by four separately adjustable power supplies,
The a-c output signals were separated from the steady signals and amplified
before leaving the rotating shaft through the sliprings and brushes. Out-
side the shaft, the a-c signals were sent through another set of amplifiers
and a set of attenuators to adjust the signals to the proper level for the
tape recording and analyses. The signals were constantly monitored by an
oscilicecope, and photographic records were made of the waveforms when the
signal was -acorded on tape. A one pulse per revolution was also recorded

on tape for phase reference along with 60 pulses per revolution to control

-
g

the analog-to-digital conversion. A digital time code was also recorded

I'. £
on the tape to identify the data and permit the use of an automatic tape- lag
search unit during digitalization. The d-c signals representing the steady P

!

v-"'-,j

'{;.

components were read on a direct-current electronic voltmeter,
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On-the-spot analysis of the signal was carried out by utiliziag a two-
channel? constant-bandwidth, wave analyzer consisting of a common local
osciilafof, two mixers, and two crystal filters matched for frequency and
phase. The siagle-toonth pulse was fed into one channel as a phase refer-
ence. This pulse contained strong harmonics of the shaft frequency in
phase with each other because the pulse was narrov and symmetrical. An
oscilloscope enabled the analyzer to be tuned to a desired harmonic of
any cne of the unsteady signals and the reference signal which had a fixed
relationship to the angular position of the propeller., The amplitude
of the unsteady signal was measured by a voltmeter, and the phase angle was
measured by sending the two signals through a phase meter. All six
components were measured by switching the analyzer and multipling by the
calibration matrix with side forces and bending moments resolved into
vertical and horizontal components by hand calculation.

The magnetic pickup used to sense the position of the single-tooth
gear was located in the upward vertical position, The single-tooth gear
w:8 80 mounted on the shaft that it was in line with the midchord of the
reference blade root section. Therefore, the single-tooth signal indi-
cated when the reference blade was in the 0N-deg, upward vertical position,
i.e., the reference position for the sinusoidal variations in the six
components of the propeller unsteady forces is the upward vertical.

The digital analysis was performed by using an Interdata minicomputer
to average the signals over an entire run and to multiply the averaged
signals by a 6x6 calibration matrix to obtain values of thrust, torque,
side forces, and hending moments in pounds and pound-feet, The computer
then resolved the rotating side force and bending moment vectors into
vertical and horizonal components and harmonically analyzed the signal
to provide the steady and higher harmonic amplitudes and the phase angles
relative to the propeller position at which the single-tooth pulse was

generated.,

11
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RESULTS
As already shown in Figure 2. the results of open-water experiments
indicated that the pitch for some of the propellers was not precisely cor-
rect because the open-water curves were not equally spaced with respect to a
line perpendicular to the slope. The observed differences were attributed
to allowable commercial tolerances during the commercial manufacturing
process, It is felt that such deviations among the propellers in the series
did not significantly alter the trends observed in the water-tunnel experi-
nents, as indicated by the fluctuation forces and moments presented next.
Figures 11-18 give the unsteady loading data for the series of propellers
selected to investigate the effect of pitch on propeller-produced unsteady
loading., Figures 11 and 12 respectively show the nondimensionalized un~
steady thrust and torque for the three-cycle wake experiments. The trends
indicated that the unsteady thrust and torque increase with increasing
advance coefficient. This increase is mainly due to the increase in the
circumferential velocity variation which is proportional to the mean
velocity., Figures 13 and 14 present the corresponding phase angles for
the unsteady thrust and torque. The phase angles given in the figures are

defined as foliows. Let . be the phase angle given by

F = |F| sin (no + .F)

where F represents any of the six components of the unsteady loading and
’F is the phase angle of the blade-~rate harmonic of the propeller loading.
The phase angles corresponding to the orientation of the screen in
the tunnel are defincd by Equation (1) and have already been given. The
phase angles of the blade-~rate component of thrust and torque are measured
with respect to the upvard vertical in the propeller disk and the reference
line of the propeller blade. Similarly, the phase angles for the four-cycle
vake and the side forces and bending moments are related to the upward
vertical,
Figure 15 indicates the horizontal and vertical bearing forces for the

eight propellers, Figure 16 shows the horizontal and vertical bending

12
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moments, and Figures 17 and 18 respectively present the corresponding phase
angles for the bearing forces and bending moments. These angles are
defined in the same manner as described previously, keeping in mind that

z + 1 is used as the order of harmonic instead of blade-rate (z = number
of blades).

DISCUSSION

As pointed out in the introduction, the main purpose of this investi-
gation was to determine the effect of pitch on the fluctuating forces and
moments produced by a propeller while cperating in a spatially nonuniform
wake field. Since the problem of determining the effects of changes in
prcpeller geometry on the propeller vibratory forces concerns designers of
marine propellers, a correlation of the experimental data is presented in
terms of propeller design concepts. First, however, the present results are
compared with the measured data of Boswell and Hiller.1

. The one Boswell-Miller case which permits comparison is their experi-

ment with Propeller 4118 (P/D = 1.077; AE/Ab = 0.6). The nondimensionalized
unsteady thrust and torque (nondimensionalized by using the steady design
thrust and torque, respectively) for this model at a design advance coef=-
ficient JA equal to 0.83 were 0.45 and 0.36, respectively. The steady
design thrust coefficient KT was 0.15. The corresponding results for Pro-
peller 4591 (P/D = 1,08; AE/A° = 0.54) for K = 0.15 were approximately
0.48 and 0.37 for the nondimensional thrust and torque, respectively. The
corregponding advance coefficient for this case was J = (.77, and the average
torque coefficient, 10 KQ’ was equal to 0.29. Since the comparison indi-
cates that the unsteady thrust and torque coefficients for the two pro-
pellers were nearly the same, it is concluded that the selection of com-
mercially available propellers was indeed adequate for this investigation.

From the standpoint of designers of marine propellers, let us now
examine the present experimental data for trends in the amplitude of the
various unsteady forces and moments for a rang2 of typical ship propulsion

conditions.

13
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A marine screw propeller is usually designed for a particular ship. The
basic data which chatacgetizes tﬁe ship are the wake survey in the pro-
peller plane and the resistance of the hull, including an estimate of the
interaction coefficients (thrust deduction and wake fraction). The
resistance data, thrust deduction, and wake fraction can be represented as
a thrust loesding coe.ficient which usually varies only slightly with ship
speed. For a given speed or operating point, the thrust loading coefficient

J va D

c 3.5 .8 ( T ) (3)
Th = 2 x 2.2
is a constant. FEquation (3) y{. 'ds a quadratic relationship between KT and
J which can be plotted on a graph along with the propeller open-water charac-
teristics. The intersection gives the operating point. This concept of the
ship operating point was used to evaluate the effect of changing pitch on the
design of a propeller in terms of the unsteady propeller forces produced
when the propeller operates in a wake,
The four values of thrust loading coefficient considered were selected
to cover the range of typical ship operating conditions, namely, 0,51, 1.02,
1.53, and 2,04, These vield ".T/J2 values equal to 0.2, 0.4, 0.6, and 0.8,
respectively. 1In addition to showing the open-water characteristics of the
propellers evaluated in this investigation, Figure 2 contains plots of the
four constant-thrust coefficients, or ship operating characteristic curves,
For a given CTh' the intersections with propeller characteristics indicate
a change ir J versus pitch, Since CTh is usually given at a particular speed,
the change in J with pitch indicates the change in shaft speed. Obviously,
the higher the pitch, the lower the shaft speed and, conseq ently, the higher
the J. From the J for a given C

Th
case, a particular pitch) the corresponding uasteady forces can be read from

and a particular propeller (and, in this

Figures 11-18, These data and those for steady thrust and torque were used

to develop Figures 19-27. Figure 19 illustrates the effects of the changes

14




in pitch on propeller i;erfomnce, and the other curves demonstrate the
effect of pitch on the six components vi the unsteady propeller forces.

It appears, somevhat intuitively, from the velocity diagram in
Figure 28 that as the pitch is increased, the unsteady thrusc¢ should
decrease while the unsteady torque should increase with increasing pitch. .
Figures 19-23 confirm this intuition. Note that as the pitch increases
KT K. 9 and J increase., These changes result in changes in propeller
efficiency, as illustrated in Figure 19 for KT/J equal to 0.2 and 0.6,
Therefore, tradeoffs with efficiency ¢ -; potential improvement in alter-

£ Y DA

nating thrust by way of increasing pitch must be evaluated in a design
problem. Fortunately, in the case of pitch variation, the higher effi-
ciencies were obtained with the higher pitched propell:rs for the low
values of the steady thrust loading coefficient, Morecver, the effect of
pitch on the alternating forces was not as large for the higher valuecz

of the steady thrust loading coefficient and, consequently, the higher
efficiency designs at the lower pitch ratios constitute the proper design
selections,

Figures 22 and 23 present the unsteady torque results. The coeffi-
cient used in Figure 22 (KQ/JZ) was selected both because it did not con-
tain the shaft speed and because it was the coefficient considered by
Boswell and Hiller.l The data in Figure 22 show that for a given ship
speed or thrust loading coefficient (KT/JZ), the unsteady torque increased
with pitch ratio. This result contradicts the Boswell-Miller analytical
predictions1 which were computed hy using an early version of the SIT
program.2 However, the result is consistent with what was indicated by
the simple study of the velucity diagram given above. Figure 23 shows that
the ratio of the unsteady torque divided by the stead; torque tended to

decrease slightly with increasing pitch-diameter ratio at a constant thrust
coefficient,

The alternating side forces did not show significant changes with
pitch, as illustrated in Figures 24 and 25. The bending moments decreased
with increasing pitch, as shown in Figures 2¢ and 27.

Wy E
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Thése data indicate that in genéral, the higher the pitch in a given
design problem, the greater the improvemént that can be realized in alter-
nating propeller thrust. However, such decreases are not significant from
the design viewpoint because as far as efficiency is concerned the optimum
design will yield a near-optimum pitch with respect to alternating force
production, Moreover, changes in the unsteady forces contributed by skew
and/or warp distributions are much nore significant than the changes dis-

cussed herein.l’l"6

SUMMARY AND CONCLUSIONS

The six components of unsteady loading were measured experimentally for
a series of three-bladed stock propellers that differed only in pitch. The
unsteady forces and moments were produced by operating the propellers behind
three- and four-cycle wake screens., The results lead to the following
conclusions:

1. The unsteady thrust decreased with increasing pitch at a constant
thrust loading coefficient,

2. The unsteady torque as described by the coefficient ﬁQ/J2 in-
creased with increase in pitch at a constant thrust loading cnefficient.
However, the ratio of unsteady-to-steady torque tended to decrease slightly
with increasing pitch-diameter ratio at a constant thrust loading
coefficient,

3. The side forces nondimensionalized by the steady thrust did not
vary significantly for the various pitch ratios at a constant thrust
loading coefficient.

4, The bending moments decreased with increasing pitch at a constant
thrust loading coefficient,

5. 1In general, the results indicate that the higher the pitch in a
given design problem, the greater the decrease in alternating propeller
thrust that can be realized. However, it is not a practicable alternative
to adjust P/D ratio as a means of decreasing alternating thrust for three

reasons:

16
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(a) as far as efficiency i8.concerned, optimim designs will yield near- .
optimum pitch ratios ir;tt{ r‘e“gafd to altemting thrust production; (b) the
unsteady torque increases with pitch; and (¢) other changes in geometry,
e.g., skew and/or wirp, have been found to result in much greater changes
in the alternating forces produced by propellers than were measured in
this investigation. .
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- Typical Shape of the Propeller Series
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(Illustrated by Propeller 4592
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SIDE FORCE 1 SIDE FORCE 2

Figure 7 - Typical Signals in Three-Cycle Wake
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E Figure 19 - Changes in Efficiency, Shaft Speed, Blade Frequency, g
k- Thrust, and Torque with Change in 2itch-to-Diameter Ratio :
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TABLE 1 - GEOMETRIC CHARACTERISTICS* OF STOCK PROPELLERS 4588, 4589, 4590,
4591, 4592, 4593, 4594, AND 4595
(Data are the Average Measureménts for the Eight Michigan M-P Series)

Diameter (D) mm 305
Number of Blades Z 3
Fxpanded Area Ratio AE/AO 0.54
Blade Thickness Fraction BTF 0.36
Hub Diameter Ratio (cylindrical hub) 0.2
Rake 0
Skew 0

P/D = 0.58, 0.75, 0.92, 1.08, 1.25, 1.42, 1,58, 1.75

r/R c/D*

0.2 0.272
0.3 0.317
0.4 0.365
0.5 0.406
0.6 0.437
0.7 0.434
0.8 0.403
0.9 0.325
1.0 0.0

*The data is an average of measurements of the
eight propellers.
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